EECS 221

S.P. 2-C

Find a vector \mathbf{B} that is perpendicular to the vector $\mathbf{A}=-4 \hat{\mathbf{a}}_{x}+2 \hat{\mathbf{a}}_{y}-3 \hat{\mathbf{a}}_{z}$ that has a magnitude of 2 and has a z component of value 1 .
S.P. 2-D

It is known that the vector field \mathbf{A} has the same magnitude and direction at all points in space and is represented in Cartesian coordinates as: $\mathbf{A}=3 \hat{\mathbf{a}}_{x}-2 \hat{\mathbf{a}}_{y}-5 \hat{\mathbf{a}}_{z}$. Find the representation of \mathbf{A} at any point in space using:
a) Cylindrical coordinates
b) Spherical coordinates
S.P. 2-E

A vector field \mathbf{V} has a value $\mathbf{V}(\mathbf{r})=\frac{1}{\rho} \hat{\mathbf{a}}_{\rho}$ at all points in space. Find the expression for \mathbf{V} at an arbitrary point using the Cartesian coordinate system.

